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The main purpose of this paper is to provide some carefully documented experimental 
observations of the subharmonic generation of edge waves over a plane beach by waves 
normally incident on the beach from the distant ocean. In order to establish 
experimentally the details of the subharmonic instability mechanism, it is important 
first to determine the properties of the primary wave field whose stability is to be 
investigated. Thus, a detailed appraisal has been made of the wave field established in 
the tank and over the beach in the absence of edge waves. These data have been 
particularly useful in defining the amplitudes of the incident- and reflected-wave fields 
at the toe of the beach, the magnitudes of which are central to the triggering of the 
edge-wave instability. Details are presented of the edge-wave field over the beach, as 
well as marginal stability curves and initial growth rates of the instability, the latter two 
of which are compared with theoretical estimates obtained from extant theories of the 
instability mechanism. Some experiments are also described in which edge waves were 
established as modes forced by topographical imperfections at the beach. 

1. Introduction 
In 1952 Ursell demonstrated experimentally the possibility of edge-wave modes over 

a plane beach. Theoretically the amplitude of such a wave decays exponentially at large 
distances from the shoreline, precluding the possibility of generating it directly by 
forcing at large distances, and so Ursell generated the mode by forcing at the beach. 
However, it was shown experimentally by Galvin in the mid 1960s that edge waves 
could be generated through a nonlinear interaction mechanism by a wave train incident 
normally on the beach from large distances. The edge waves generated in this manner 
had half the frequency of the primary wave train, implying that the generation 
mechanism was surely a nonlinear process. This generation process was subsequently 
confirmed by several workers including Birchfield & Galvin (1975), Guza & Inman 
(1975), and Guza & Bowen (1976). 

Theoretical explanations for the above generation mechanism for edge waves have 
been given, for example, by Guza & Davis (1974), Guza & Bowen (1976), Minzoni & 
Whitham (1977), Rockliff (1978) and Miles (1990a). In each of these studies the 
stability of a normally-incident-wave field to edge-wave perturbations was considered. 
Most of the studies assumed that the flows could be described by the irrotational 
motion of an inviscid fluid, with the incident wave field being, of necessity, a standing- 
wave field. The two exceptions are the papers of Guza & Bowen (1976) and Miles 
(1990b) in which allowance is made for imperfect reflection as a result of viscous effects 
in boundary layers on the sloping beach. The importance of viscous effects on the wave 

t Dr Pritchard died while the paper was being printed. 
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motions over a beach has been highlighted by Mahony & Pritchard (1980) who showed 
that the primary wave field deduced on the basis of an inviscid model provides a very 
poor representation of wave fields observed in practical situations, even when there is 
no wave breaking over the beach. Even so, it would appear that a basic mechanism for 
the transfer of energy to the edge-wave field has been clearly established and the models 
do indeed capture several aspects of the experiments to be described. There are, 
however, some important features of the observed motions that are not well-predicted 
by the various models. 

Following the original experimental demonstration of the possibility of edge waves 
by Ursell (1952) there have been several other experimental studies reported in the 
literature including works by Guza & Davis (1974), Birchfield & Galvin (1975), Guza 
& Inman (1975), Guza & Bowen (1976), Yeh (1986) and Lin (1988). Most of these have 
been concerned with the generation process by waves incident from the ocean, but in 
the study by Yeh the waves were generated directly at the beach, as had been done by 
Ursell. Yeh made careful measurements, in a relatively large-scale experiment, of a 
number of properties of the edge-wave field and found that several of his observations 
were in significant disagreement with the extant theoretical models. For example, the 
predicted magnitude of the set-down phenomenon of the mean water level was only 
half that observed experimentally, and the predicted offshore leakage rates of standing 
edge waves grossly underestimated the observed rates of decay of the waves. Thus the 
applicability of the theoretical models to the laboratory situation must be brought 
seriously into question. 

The interpretation of laboratory experiments concerning the run-up of waves on 
plane beaches requires considerable care, as illustrated by the following simple 
experiment. A plane wave, propagating along a uniform channel approaches a plane 
beach at normal incidence. When such a wave impinges on an accurately plane beach, 
aligned to be laterally horizontal to a high degree of accuracy, the wave run-up is, as 
expected, nearly uniform across the beach, an example of which is shown in figure 1. 
Figure l(a) shows the shoreline with the wave near its point of maximum wash 
excursion, and figure l ( b )  shows the shoreline at a time when the wave was near its 
lowest point on the beach. In the latter photograph the instantaneous shoreline appears 
as the more pronounced horizontal line, and the fainter line indicates the line of 
maximum excursion of the wave marked by the edge of the residual film of water left 
by the wave when it receded. (Note that the faint horizontal line appearing near the 
bottom of the photographs is associated with the construction of the beach and is not 
relevant to the interpretation of the fluid motions.) The nature of the wave motion over 
the beach can be changed dramatically, as indicated in the photographs of figure 2, by 
the apparently minor perturbation of allowing a small amount of leakage past the 
edges of the beach. Thus, the only difference between the conditions for the 
photographs shown in figure 1 and those of figure 2 was that a small gap of about 1 mm 
between the edges of the beach and the sidewalls of the channel in which the waves were 
generated had been sealed with a caulking compound for figure 1 and this had been 
removed for the other experiment. The forcing period (0.8800 s) for these motions 
happened to be reasonably close to the edge-wave period of 0.8556 s associated with 
one wavelength across the channel. Thus, it would appear that the motions shown in 
figure 2 were those of an edge wave forced by effects at the sides of the beach. But it 
is evident that, without the sealed-beach experiments, these waves could easily have 
been construed as arising from a nonlinear interaction associated with the incident 
wave field. It is felt that topographical forcing of wave modes such as the one shown 
in figure 2 is likely to be very important in the oceanographic context and, in particular, 
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FIGURE 1. The shoreline of a plane wave normally incident on a plane beach of slope 15". (a) The 
shoreline near the time of maximum wash excursion. (b) The shoreline near the time of minimum 
wash excursion. Also evident is the uppermost 'edge' of the residual film left from the run-up phase 
of the motion. The period of these motions was 0.8800 s and the water depth at the toe of the beach 
was 50 mm. 

FIGURE 2. The shoreline of a plane wave normally incident on a plane beach of slope 15" for which 
there was a small gap between the edges of the beach and the walls of the tank in which the waves 
were generated. (a) The shoreline near the time of maximum wash excursion. (b) The shoreline near 
the time of minimum wash excursion. Also evident is the uppermost 'edge' of the residual film left 
from the run-up phase of the motion. The period of these motions was 0.8800 s and the water depth 
at the toe of the beach was 50 mm. 

we shall demonstrate below how edge-wave modes can be excited easily through 
topographic forcing. 

The main thrust of this work is the careful study of the establishment of edge waves 
over a sloping beach through the subharmonic resonant-interaction process referred to 
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above. To investigate the bifurcation process it is essential first to establish in some 
detail the properties of the primary wave field whose stability is to be investigated. 
Because of the scale on which these experiments were undertaken, the amplitude of the 
incident-wave train needed to excite the instability was quite large with the result that 
nonlinear effects played a not insignificant role in the evolution of these waves. 

A complete interpretation of the experiments would be a somewhat daunting task 
and we have therefore decided simply to concentrate on outlining the main 
experimental findings. Thus, after providing some basic definitions, a careful 
description is given of the experimental apparatus and the procedures used to make the 
measurements. Then, in $4, we provide a summary of the primary wave fields in the 
uniform section of the channel and over the beach. In connection with these 
measurements, some numerical experiments are described (see the Appendix) which 
show the importance of dissipative effects in determining the structure of the observed 
longitudinal-wave fields and give a feel for their nonlinear properties. The 
measurements of the primary wave field will be used to prescribe an effective amplitude 
of the incident wave at the toe of the beach and an estimate of the relative magnitude 
of the reflected wave. While measurements of the basic wave field in the present 
situation might seem to be a somewhat routine exercise, the results were not without 
surprises. In particular, at T z 0.43 s, we observed a most unusual (and inexplicable to 
us) response for the longitudinal field. Details of edge-wave fields, generated through 
a parametrically forced (subharmonic) instability, are presented in $ 5.  Here we give 
details of the edge-wave structure over the beach and of the effect of the edge wave on 
the longitudinal-wave field. Marginal stability curves, showing the critical incident- 
wave amplitude (as a function of wavemaker period) above which the instability grows, 
have been determined and are compared with theoretical estimates. The marginal 
stability curves reveal an unexpected lobe-like structure, which also is seen clearly in 
the measured growth rates of the instability. This unexpected structure appears to be 
associated with a secondary instability in which a longitudinal seiche of the entire tank 
is involved. Measurements of the equilibrium edge-wave amplitudes are also presented. 
In $ 6  some results are presented in which the edge waves were forced by a small 
transverse tilting of the beach, under which circumstances the parametric mechanism 
is not required and the waves arise through synchronous generation. In the concluding 
section we have tried to give a brief appraisal of what we feel are the most significant 
of our findings. 

2. Basic definitions 
The configuration with which we shall be concerned is depicted schematically in 

figure 3. Waves are generated by a plane wavemaker spanning a uniform channel of 
breadth b, filled with water to a depth H .  The far end of the channel is terminated by 
a plane beach at an angle p to the horizontal. The experiments have been designed so 
that the waves generated in the uniform section of the channel have wavelength 
considerably larger than the water depth, and the main purpose of the study is to 
investigate the possible nonlinear generation of edge waves over the sloping beach. 

We shall suppose that the wavemaker executes sinusoidal oscillations of period T ( = 
27t/w, where w is the frequency) and amplitude ti, and that it is located a distance Lo 
from the toe of the beach, so that the distance L from the wavemaker to the shoreline 
is L,+H/tan p. The action of the wavemaker gives rise, basically, to a longitudinal- 
wave field of amplitude to(Z) cos (wF+ 8,(Z)), where Z denotes distance from the 
wavemaker, F is time and 8, is a phase function. (We shall use the tilde to denote 
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FIGURE 3. Schematic representation of the apparatus used in the experiments. 

dimensional quantities : it will be convenient in describing the results to use different 
non-dimensionalizations for the motions in the uniform part of the channel and those 
over the beach, and these will be introduced at the appropriate time.) Also present in 
the tank will be a transverse wave motion of amplitude ft(2) cos (of+ O,(X)), having a 
cross-channel wavenumber 1 = n/b.  Typically the transverse wave field was small 
compared with the longitudinal field and forcing frequencies were such that other 
possible transverse modes were not observed. Let [ = L - 2  denote distance from the 
shoreline, let j be the transverse coordinate, measured from the centreline of the 
channel, and let z" be the vertically upward coordinate, measured from the undisturbed 
free surface. 

At special forcing frequencies, edge waves can arise over the sloping beach. We shall 
be concerned here only with the classic Stokes wave, whose edge-wave amplitude ;i is 
given by 

(1) 

for which the dispersion relation relating the frequency CT to the wavenumber k is given 

?([, y, q = ag e-@cosP cos (ky - gq, 

v2 = gk sin p, 
by 

(2) 

where g is the gravity constant and a represents the wave amplitude at the shoreline. 
(The Stokes wave is, of course, just one of a discrete set of possible modes, as shown 
by Ursell 1952.) It is seen from (1) that the wave amplitude decays exponentially with 
[but, because of the finite extent of the beach in our experiments and also possibly as 
a consequence of nonlinear effects, the edge waves may extend into the uniform part 
of the channel. In keeping with the above notation we shall denote the amplitude of 
the edge-wave field by ;i,@ cos (g?+ Oe(a). Let the dimensionless lengthscale 6 over the 
beach be given by 5 = &'/g sin p. 

The edge wave may extend into the uniform part of the channel either as a decaying 
mode or as a radiating wave, effects which are described nicely by Mathew & Akylas 
(1990). It was shown by Guza & Bowen (1976) that a standing edge wave can leak 
energy to an outgoing progressive wave with zero cross-channel wavenumber and 
frequency 2c (modulo a nonlinear detuning effect). In addition, transverse modes may 
radiate into the channel. Suppose that such a mode has wavenumber k = nf  + m, where 
n = 1,2,3, . . . and Zis directed across the channel and m is the longitudinal wavenumber. 
Then the dispersion relation in the uniform part of the channel demands that 

(3) 

For subharmonic generation of edge waves, g % &. It follows, for the Stokes wave, 
that m must be purely imaginary, so the mode is trapped close to the toe of the beach. 

CT' = g Jkl tanh (lkl H ) .  
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Indeed, it is only the higher harmonics (n = 3 or 4, depending on which member of the 
Ursell set of edge waves is considered) that can radiate as free waves. 

3. Experimental apparatus and measuring techniques 
3.1. The wave tank 

The tank used for these experiments was a channel of length 6 m and of cross-section 
approximately 30 cm x 30 cm. The sidewalls and the bed of the tank consisted of sheets 
of plate glass supported on a timber base. The gaps between the sidewalls and the glass 
bottom were packed with a filling compound. 

A levelling of the tank was carried out by measuring water depths with a finely 
pointed cone mounted on a micrometer screw, the micrometer being clamped to a 
small tripod. The micrometer was slowly screwed down until the tip of the cone just 
broke the water surface, providing a measurement of the 'local' water depth to within 
approximately fO.OO1 cm. After levelling, the maximum deviation of the bed of the 
tank from a mean horizontal plane was less than 0.03 cm, with the cross-channel 
deviation at any given location along the tank being less than 0.006 cm. The channel 
width was found to be 29.68 k 0.08 cm, but an adhesive tape attached to the sidewalls 
reduced the effective width by approximately 0.1 cm. This tape was a finely woven 
cotton bandage with an adhesive backing. Because of the absorption of water by the 
cotton the effects of contact-line hysteresis were avoided, virtually eliminating the 
formation of capillary ripples by the wave action at the sidewalls of the tank. 

The tank was filled to a depth of approximately 5 cm for most of the experiments 
described below, but a few measurements were made with a depth of 10 cm. 

3.2. The wavemaker 
The wavemaker consisted of a plane flap mounted on a horizontal shaft at a height 
73.6cm above the bed of the tank. A driving mechanism forced the flap to make 
sinusoidal oscillations of amplitude not exceeding about rad, the actual displacement 
of the flap being measured (to within f 3 % at worst, and usually within f 1 %) by a 
dial gauge bearing directly on it. Care was taken to make the face of the paddle square 
across the channel and vertical at the mid-point of its oscillation. Because of the fairly 
small depths used in the experiments, the horizontal displacement of the paddle was 
only about 7% greater at the bed of the channel than at the water surface. Thus, for 
convenience, we shall refer to a mean horizontal displacement of the paddle, namely 
the displacement at mid-water depth, as the stroke s, with the amplitude of the 
oscillations being $.Y. The flap was specially stiffened against torsional flexure. 

The face of the wavemaker was of acrylic sheet which had been lightly abraded with 
a fine emery paper to facilitate the retention of a film of water well above the nominal 
depth in the channel. As with the cotton bandage on the sidewalls of the tank, this film 
helped avoid the formation of capillary ripples. Strips of foam plastic were attached to 
the sides and bottom of the wavemaker to fill the gaps between the wavemaker and the 
tank, and to reduce the flow past the edges of the paddle. The wavemaker was located 
approximately 25 cm from the rear end of the channel. 

The wavemaker was attached through a variable throw crank to the shaft of a 
(400 pole) stepping motor. The ratio of the length of the crank to its throw was over 
300: 1. The electrical pulses controlling the stepping motor were derived from a crystal 
oscillator with frequency stability better than 5 parts in lo'. This provided such good 
frequency control for the driving mechanism that phase drifting of the wavemaker was 
of negligible importance. 
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3.3. The beach 
Special care was taken with the construction of the beach to avoid, as much as possible, 
the formation of transverse waves by topographic irregularities at the beach. To ensure 
good wetting properties at the shoreline and to provide a planar surface, the upper part 
of the beach was made from a piece of 12 mm thick float glass. This glass plate rested 
on a brass carriage, part of which comprised the lower section of the beach, namely the 
initial 15 cm near the toe. At the toe, where the beach met the bed of the channel, the 
brass tapered to a thickness of 1.8 mm. The glass plate rested on four finely threaded 
screws which were such that the upper milled surface of the carriage and the upper 
surface of the glass lay in the same plane. When correctly adjusted the separation 
between the lower (brass) section of the beach and the glass was indiscernible to the 
touch. The carriage rested on the lower edge of the milled flat at the front of the brass 
section and on two threaded 'legs' which were used to set the slope of the beach. This 
adjustment, and the determination of the slope, were made on a precision surface table. 
The slope was measured to within 0.05" and the cross-channel slope was estimated to 
be less than 0.02". When placed in the tank the beach was aligned so that the machined 
flat at the very toe of the brass carriage was perpendicular to the sidewalls of the tank. 
The experiments to be described were made with three different beach slopes, namely 
5.71" (0.100 rad), 10.00" (0.175 rad), and 15.00" (0.262 rad). 

Once the beach had been properly positioned in the tank, the 1-2 mm gaps between 
the beach and the sidewalls of the tank were sealed with an epoxy resin (containing a 
powdered-slate filler) which, when hardened, was abraded with emery paper to provide 
a smooth surface flush with the beach. The joint between the glass plate and the brass 
carriage was also sealed with this resin and it was used to 'extend' the plane of the 
beach down to the bed of the channel from the machined flat at the toe of the brass 
carriage. This construction gave a watertight seal between the beach and the channel. 
The intersection between the plane of the beach and the bed of the channel was located 
at a distance of 450.0 cm from the mean position of the front face of the wavemaker 
in all these experiments. 

Prior to assembly, the upper surface of the glass plate had been roughened through 
abrasion with a fine carborundum paste so that a film of water could be retained by 
the beach well above the shoreline. The resin filler at the edges of the beach also had 
good wetting properties. In addition, the surface was rubbed lightly with a fine emery 
paper before each experiment to guarantee cleanliness and good wetting properties at 
the shoreline. Through the use of these precautions, the generation of capillary waves 
at the shoreline was not a problem. 

3.4. Wave measurements 
Measurements of the wave amplitudes were made using proximity transducers located 
just above the surface of the water. The principle on which the instrument is based is 
that of determining the capacitance of the air gap between the transducer (one 
capacitor plate) and the water surface (which effectively forms the second plate of the 
capacitor). The measured capacitance may be used to infer the distance of the water 
surface from the transducer. The electronics associated with the instrument (Wayne 
Kerr B731B proximity meter) provided an output voltage that varied linearly with the 
distance between the two electrodes, for separations up to about half the diameter of 
the transducer. The frequency response of the system extended from d.c. up to about 
1 kHz. 

The output voltage from the proximity meter was transferred to an ultraviolet chart 
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recorder, to provide a permanent record of the displacement of the water surface at the 
position of the transducer. Half the peak-to-peak amplitude of this waveform was used 
as a measure of the wave amplitude. The waves generated in the present study had 
amplitudes ranging between 0.005 cm and 0.5 cm. Two sizes of capacitance probes 
were used to measure them: one had a diameter of 1.1 cm and the other a diameter of 
2.5 cm. When the waveforms were not sinusoidal in time, owing to nonlinear effects, 
it would have been better to make a Fourier decomposition of the record, but we 
judged that the motions did not differ enough from a sinusoid to warrant the additional 
effort, given the technological resources available to us, required for such a 
decomposition. Examples of the extent of the nonlinear structure of the motions are 
indicated in the Appendix. 

Two such probes were mounted on a carriage, one over the centre of the channel and 
the other at a distance of 6.0 cm from the sidewall. The central probe was used to give 
an estimate of the longitudinal wave amplitude, and the difference in amplitudes 
recorded by the two probes was used to estimate the amplitudes of cross-channel 
waves. The differencing of the voltages from the two transducers was effected 
electronically, with the actual amplitudes reported herein being determined on the 
assumption that the cross-channel modes were half-cosine waveforms. For the 
differencing technique to be reliable, it is important that both transducers are located 
on the same phase lines of the longitudinal-wave field: we have tried to ensure this by 
registering the alignment of the carriage to the sidewalls of the channel, keeping the 
probes on a perpendicular to the walls irrespective of the position of the carriage along 
the channel. 

The accuracy of the measurements of the longitudinal waves should have been better 
than 2 YO. It is difficult to make a reliable estimate for that of the cross-channel waves, 
since the accuracy is related to both the incident- and transverse-wave amplitudes. 
However, for the experiments in which cross-channel waves were of significance, we 
believe the wave amplitudes were determined to an accuracy of better than 10%. 

3.5. Procedure 
When the appropriate adjustments to the beach had been made, it was placed in the 
channel with the toe at a distance 450 cm from the wavemaker (cf. $3.3). The beach was 
then sealed in place and left until a new slope was needed. Immediately before each 
experiment the beach was given a light rub down with emery paper and surface films 
were skimmed off the water. 

The depth of the water was then set to the desired value using the pointed 
micrometer gauge described in 5 3.1. This gauge was placed at a ' standard ' location in 
the tank and water was gradually added or removed until the level was within 0.001 cm 
of the desired setting. Thus, although the channel bed was flat only to within 0.03 cm, 
the water level in the tank was set much more accurately, allowing good reproducibility 
of operating conditions. 

Once the water level had been set, the wavemaker was turned on and the experiment 
begun. It was found that the experiment could be continued for about an hour without 
evaporation losses changing the depth by too much (i.e. by more than 0.001 cm) or 
without the accumulation of surface films having a significant influence on the wave 
motions. 
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4. Primary wave field 
Here we describe some of the properties of the basic wave field in the channel and 

over the beach. The results are needed to indicate the nature of the primary motion 
whose stability is to be investigated. 

4.1. The wave field in the channel 
These motions can be viewed as being composed of the following waves. (i) A 
longitudinal-wave train, crested across the channel, which is generated at the 
wavemaker. This train propagates along the channel, being slowly dissipated in the 
process, and is partially absorbed on the beach at the far end of the channel. (ii) The 
train reflected from the beach, which travels back along the channel to be re-reflected 
at the wavemaker. (iii) A cross-channel motion generated partly at the wavemaker, 
partly by the reaction of the longitudinal motions to small geometric irregularities in 
the channel or possibly through forcing effects of surface tension at the walls of the 
channel arising from the passage of the longitudinal motions. We shall refer to this 
motion as the transverse component of the wave field. (iv) A non-propagating field, the 
so-called parasitic field, associated with the motion of the wavemaker, arising because 
the velocity structure imposed by the wavemaker is not the same as that in the freely 
propagating waves. This motion, which is localized near the wavemaker, would appear 
to have little impact on the present study. (v) A possible seiching motion associated 
with standing waves along the tank. (vi) A possible longitudinal or transverse wave 
motion resulting from radiation of the edge-wave field into the channel. 

The steady wave field in the channel is established to accommodate a balance 
between the energy input at the wavemaker and the various losses from the wave 
motions. The energy input is related to the wave amplitude and the relative phase of 
the wavemaker and the motion of the water at the wavemaker. Since the phase and 
amplitude of the reflected-wave field depend crucially on the positioning of the beach 
and on the dissipative processes taking place over the beach, it is apparent that the 
action of the beach is important in determining the overall wave motion established in 
the tank. 

4.1.1. The wave field at a given location 
Measurements of these fields were of two kinds. One set of experiments concerned 

the development of the wave train as it propagated into still water, paying particular 
attention to the wave amplitudes well behind the leading crest, but prior to the return 
of the reflected wave field from the beach. The other set related to the steady amplitude 
field that was established in the channel. Examples of the results of such measurements 
are given in figure 4(a-c), where both the longitudinal-wave amplitude, I& := 2&s, and 
the transverse-wave amplitudes, := 2ct/s, at X (:= Z / H )  = 30.0 (i.e. at a distance of 
30 water depths from the wavemaker) are compared with the amplitudes of the 
longitudinal motions that would be expected on the basis of Havelock’s linear 
wavemaker theory (e.g. see Wehausen & Laitone 1960 or Ursell, Dean & Yu 1960). 
Each of these figures corresponds to a different amplitude of forcing by the wavemaker. 
Marked on the figures are some of the periods relevant to the experiments: q, TB, 
T, correspond to forcing periods for the possible subharmonic generation of the 
(fundamental) Stokes edge wave over each of the three beaches used in the experiments, 
and the periods T,, n = $, 1, $, 2, correspond to natural periods of oscillation for modes 
with n wavelengths across the channel. In these figures the solid black symbols denote 
the amplitudes of the longitudinal motions and the open symbols give the transverse- 
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FIGURE 4(a, b) .  For caption see facing page. 

wave amplitudes ; the circular symbols refer to measurements made from the transient 
wave field and the triangular symbols refer to measurements made from the steady 
wave field. Measurements of the longitudinal component for the steady wave field are 
given only in figure 4(a) .  The terminating beach for these experiments had a slope of 
5.71". 
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FIGURE 4. Measurements of the wave amplitudes to and tt at X = 30.0 as a function of the wavemaker 
period T. A, refer respectively to measurements from the longitudinal steady and transient wave 
fields, and A, 0 refer respectively to the transverse steady and transient wave fields. The curve shows 
the expectation from linear wavemaker theory. The marked periods are: = 0.3 122 s, T,,, = 0.3704 s, 
T,  = 0.4908 s, = 0.6048 s, T,  = 0.7376 s, T,,, = 0.8828 s, T, = 0.9741 s. The water depth H was 
50.0 mm. (a) Wavemaker stroke s = 0.53 mm; (b)  s = 1.47 mm; (c) s = 5.06 mm. 

The measurements of the steady-state wave amplitudes at X = 30.0 show a 
considerable degree of variation as a function of T. This derives from imperfect 
absorption of the incident waves at the beach, so that the steady wave field is a 
combination of an outward-travelling and a reflected wave train. The partitioning of 
the wave field into these two components requires more information than just the 
vertical range of movement of the water surface at a given location, because the relative 
phases of the waves depends both on the positioning of the beach and on the period 
T. But this effect would suggest that, by taking averages of to locally in the period T, 
the steady-state amplitudes should give a reasonably good estimate of the incident 
wave amplitude and, indeed, when interpreted in this way the two sets of data are 
found to be in broad agreement with each other. (More detailed descriptions of the 
partitioning of wave measurements of the kind described here are given by Mahony & 
Pritchard 1980 and by Benjamin, Boczar-Karakiewicz & Pritchard 1987, and further 
examples of the steady-state field are described below.) 

The method by which the estimates of the incident-wave amplitude at X = 30.0 were 
made from the unsteady measurement needs some explanation. Initially the water in 
the tank was motionless and, at a given instant, the wavemaker was set oscillating with 
period T. The wave amplitude at X = 30.0 was recorded and it was found that, after 
five or six crests had passed, the wave amplitude was nearly constant and remained so 
until the wave train reflected from the beach reached the measuring station. (The 
location of the measuring station was such that there was a good period of time 
between when the incident wave field was nearly at its steady state and when the 
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Time 

FIGURE 5. A typical example of the temporal development of the longitudinal component of the wave 
field at X = 30.0 in response to the wavemaker suddenly set oscillating with a period T = 0.4600 s. 
The steady peak-to-trough amplitude of this wave was approximately 0.64 mm. The water depth H 
was 50.0 mm. 

reflected wave train had reached the measuring station.) An example of the build-up 
of the wave train at T = 0.4600 s is given in figure 5. In this figure time increases from 
right to left and we see, at the extreme right, the build up of the wave to maximal 
surface displacements on the fourth crest and fifth trough, after which the wave field 
quickly settled into an oscillation of nearly constant amplitude. The same general 
pattern is also found from numerical calculations made on one of the model equations 
for the propagation of long waves, the so-called BBM equation (see Benjamin, Bona 
& Mahony 1972), in which the surface displacement c ( x , t )  (:=[,/H) satisfies the 
equation 

where x : = J / H  and t : = f ( g / H ) ” ’ .  Numerical methods for this model have been 
developed by Bona, Pritchard & Scott (1980). The model, with an appropriate choice 
for the constant p, used to represent dissipative effects, gave very good predictions of 
a set of laboratory experiments. Equation (4) has been solved for x, t > 0, with initial 
data [(x, 0) = 0 and boundary data [(O, t )  = h, sin u t ,  where the initial wave amplitude 
h, and the frequency w have been chosen to match the experimental conditions shown 
in figure 4. The results of the computations are given in the Appendix. From these it 
is seen that, in the presence of small dissipative effects, the wave field according to (4) 
does indeed settle down to a nearly periodic state after the first few crests have passed 
the observation station at X =  30.0. (If, on the other hand, there are no dissipative 
effects it appears from the computations that the wave field at X = 30.0 can take a very 
large time to settle down to a steady amplitude.) An interesting feature of the 
computations is the importance of nonlinear effects in modifying the sinusoidal 
waveform, especially at the larger values of T used in the experiments. 

It is seen from figure 4(a) that the observed wave amplitudes were in quite good 
agreement with those predicted from linear wavemaker theory, for periods in excess of 
the period labelled on the figure. There are, however, two competing effects to be 
taken into consideration when interpreting these results. On the one hand, no 
allowance has been made here for dissipation of the waves as they progress along the 
channel - this would reduce the expected theoretical wave amplitude by about 10 % 
near the mid-range of the periods and by about 5 %  near the upper end of the range 
of periods; at the smaller values of T, measurements of the wave field along the channel 
indicated a reduction of approximately 30 % in amplitude between the wavemaker and 
the station at X = 30.0. On the other hand, with the very small wavemaker strokes for 
figure 4(a) there was, especially at the larger periods, a small amount of flexure of the 
stand on which the measuring device was mounted, and we believe that this resulted 
in a slight underestimate, of a few percent, of the wavemaker stroke. Thus, in view of 
such allowances, the experiments depicted in figure 4(b), for which the nonlinearity was 
not of overriding importance (cf. the Appendix), would appear to have been fairly well 

c t  + Q + zccx - pCxx - ~ C x z t  = 0, (4) 
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represented by the classical wavemaker theory. For the experiments made with larger 
wavemaker strokes it is apparent, from figure 4(c), that the observed response at X = 
30.0 was modified to a certain extent by nonlinear effects. 

An unusual feature evident in all three parts of figure 4 is the dramatic, almost 
discontinuous change in the value of to at a period of approximately 0.43 s. As is 
apparent from figure 4(a), this phenomenon was evident in the measurements from 
both the transient and the steady measurements of the longitudinal-wave fields. We do 
not at present have an explanation of this effect. 

(Note in review : A referee suggested the possibility of enhanced energy dissipation 
at the anomalous frequencies arising from an interaction of the surface gravity wave 
with longitudinal waves of a monolayer contamination at the surface.) 

It is seen from figure 4 that the amplitudes of the transverse-wave fields in the 
channel were nearly the same for both the transient and the steady-state measurements, 
and that these fields were a small proportion, of the order of 3 or 4 %, of the amplitudes 
of the longitudinal fields. Note that, in the frequency range near T = 0.43 s, where the 
longitudinal field showed an abrupt change in amplitude, there were no apparently 
anomalous features of the transverse fields. 

4. I .2. The wave$eld along the channel 
Extensive measurements have been made of the steady-state wave field along the 

channel. Such measurements are needed to ascertain the magnitudes of the incident 
and reflected components of the wave field at the toe of the beach. These fields must 
be found empirically for each operating condition as the amplitude (and phase) of the 
waves generated by the wavemaker are dependent on the conditions established in the 
channel; in particular, the wave field must be such that, at steady state, the energy 
imparted to the wave field by the wavemaker exactly balances the energy dissipation 
in the channel. 

Examples of wave fields observed at  a forcing period T = 0.6064 s are given in figure 
6 .  The period used for these experiments was a period at  which subharmonic 
generation of edge waves was possible and, indeed, at the three largest wavemaker 
amplitudes used for the experiments depicted in parts (c,), ( d )  and (e)  of the figure, edge 
waves were present over the beach. Shown in this figure are the amplitudes of 
longitudinal-wave fields (measured along the centreline of the channel), as well as the 
amplitudes of the transverse-wave fields observed in the main part of the channel. 
There is seen to be a qualitative difference between the transverse-wave fields in parts 
(a)  and (b) of the figure, compared with those in (c), ( d )  and (e)  when an edge wave was 
present over the beach. 

As described in Benjamin et al. (1987), the longitudinal-wave field can be decomposed 
into incident and reflected components for which the magnitude of the envelope of the 
oscillations evident in figure 6 indicates the size of the reflected-wave field, and the 
mean level indicates the amplitude of the incident waves. Thus, we see from the figure 
that the amplitude of the outward-travelling wave decayed in the direction away from 
the wavemaker (located at Xw), and the magnitude of the reflected-wave field decayed 
in the direction from the beach to the wavemaker. From such a partitioning we can 
estimate the relative amplitudes of the incident and reflected longitudinal-wave fields, 
an evaluation of which, made near the toe of the beach, provides a measure of the 
reflection coefficient r from the beach. The values of r relating to the experiments 
depicted in figure 6 are given in table 1 and it is seen that the reflected-wave amplitude 
was approximately 50 % of that of the wave incident on the beach, except for the two 
largest forcing levels, under which conditions the reflected wave component was 
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FIGURE 6. Measurements of the steady-state wave amplitudes, [,, and tt in the uniform section of the 
channel, at a period T = 0.6064 s, for various forcing amplitudes, s, of the wavemaker. Distances 
[(= ( L - f ) / H )  along the channel are measured from the location of the shoreline on the beach; 
A', denotes the location of the toe of the beach, and A',,, is the location of the wavemaker. The depth 
H = 50.0 mm and the beach angle p= 15". A, 0 denote the longitudinal- and transverse-wave 
fields respectively. (a) Stroke s = 2.0 mm; (b) s = 4.0 mm; (c) s = 6.0 mm; ( d )  s = 8.0 mm; (e) 
s = 10.0 mm. Note that in experiments (c), ( d )  and (e)  an edge wave was present over the beach. 

Stroke s (mm) 2.0 4.0 6.0 8.0 10.0 
r(A',) 0.50 0.53 0.50 0.22 0.14 
2 (m) 12.7 11.8 11.9 10.6 9.6 

TABLE 1. Properties of the wave fields depicted in figure 6. Here r denotes a reflection coefficient, 2 
is a decay length and X, denotes the position of the toe of the beach. The slope of the beach for these 
experiments was 15" and the period T = 0.6064 s. 
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FIGURE 7. The steady (primary) wave field over a beach of slope 15" as a function of distance f from 
the shoreline, for various fozcins frequencies and for a wavemaker a-mplitude s = 8.0 mm. (a) 
Longitudinal-wave fields, 5 = [,/&&,); (b) transverse-wave fields, 7 = ~ , / f ( f , ) ,  where 6,  denotes the 
location of the toe of the beach. Water depth H = 50.0 mm. The symbols correspond respectively to 
the following wavemaker periods, incident-wave amplituge &( = t(f,)) at the toe of the beach and 
locations 6,  of the toe of the beach. 0, T = 0.7500 s, 5, = 2.57 mm, f ,  = 1.29; A, -T = 0.8800 s, 
to = 2.64 mm, f ,  = 0.91 ; + T = 1.0000 s, 5, = 2.90 mm, f ,  = 0.73; x , T = 1.2128 s, f = 1.89 mm, 
6,  = 0.48. 
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considerably smaller. At these larger forcing levels there was a substantial amount of 
wave breaking near the shoreline of the beach and also the presence of a healthy edge 
wave over the beach. 

It is also possible from the data shown in figure 6 to estimate a (spatial) rate of decay 
of the outward-travelling waves. Suppose that the amplitude of the outgoing wave field 
is of the form t,,(O) exp (-Z/LY), where 9 denotes a lapse rate for the waves. The values 
of LY relating to the data of figure 6 are also given in table 1, from which it is seen that 
the lapse rate for these waves was around 10 to 12 m. 

The results depicted in figure 6 are typical of the wave fields observed at other 
frequencies and with different beach slopes. Data of this kind were used to determine 
the amplitudes of the longitudinal-wave train near the toe of the beach under each 
operating condition, so that all wave measurements over the beach could be scaled by 
the size of the incident-wave field at the toe of the beach, determined by the procedure 
described above. A potentially important property for the generation of edge waves is 
the magnitude of the reflected-wave field. The measurements for table 1 were made at 
a frequency at which edge waves were expected to develop over the 15" beach. For 
comparison, the reflection coefficient at the critical frequency of 0.7400 s for a 10" 
beach was r z 0.4, and at the critical frequency of 0.9776 s for the 5.65" beach was also 
r z 0.4. Both these latter measurements were for a forcing amplitude at the wavemaker 
of s = 2.0 mm. 

4.2. The wavejield over the beach 
Examples of the wave field over the beach are given in figures 7 and 8. The wave 
amplitudes given here have been normalized with respect to the measured amplitude 
of the incident wave at the toe of the beach, determined in the manner described above 
in 54.1.2. (Each of the normalizing amplitudes is quoted in the figure caption.) The 
results given in figure 7 show the wave field over a beach of slope /? = 15" at a number 
of different frequencies, and the data for figure 8 are for a beach of slope /3 = 10" for 
a fixed wave period, but for a range of different forcing amplitudes. 

The [-coordinate used in these figures has been scaled by the decay length for the 
Stokes edge wave (cf. (1) and (2)) so that [ := [w2/4g tan p. The factor 4 appearing in 
this formula assumes that edge waves arising in the experiment have frequency 
approximately i w .  This scaling means that, for figure 7, the toe of the beach is located 
at different values of for each of the frequencies : the actual locations are given in the 
figure captions. Under such a scaling it is seen (figure 7a) that the longitudinal-wave 
fields over the beach had similar amplitude distributions : moving away from the 
shoreline the amplitude increased to a maximum value of roughly two and a half times 
the incident-wave amplitude, and then decreased to a local minimum of roughly 0.3 
times the incident-wave amplitude. These results are in keeping with the measurements 
reported by Mahony & Pritchard (1980) in which it was suggested that frictional effects 
on the beach had a strong influence on the character of the wave field. In particular, 
the sharp reduction in wave amplitude near the shoreline, as evidenced in all the 
measurements of both the longitudinal- and the transverse-wave fields, is characteristic 
of the property that viscous dissipation was a significant factor in the zone near the 
shoreline (cf. Mahony & Pritchard 1980; Miles 1990b). In addition to viscous effects 
playing an important role in the wave dynamics near the shore, there was also clear 
evidence of wave breaking at the larger amplitudes. This usually took the form of 
capillary ripples developing ahead of the wave crest as it advanced up the beach but, 
in some of the extreme cases, tumbling breakers were observed. The importance of 
wave amplitude on the dissipative process can be seen in figure 8 where the size of the 
local maximum in the wave amplitude nearest the shoreline decreased substantially as 
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FIGURE 8. The steady wavefield over a beach of slope 10" as a function of distance E from the 
shoreline, at a fo_rci?g period T = 0.7400 s and for various w_avemaker strokes, s. (a) Longitudinal- 
wave fields, [ = [,/[,&); (b) transverse-wave fields, 9 = ~ , / ~ , ( E , ) ,  where E, denotes the location of 
the toe of the beach. Water depth H = 50.0 mm. The toe of the beach is at 6 = 2.95. T_he symbols 
correspond respectively to the following valu_es of s and to the incident wave _amplitude [,( = co(E,)) 
at the toe of the beach. 0, s = 2.0 mm, C0 = 0.74 mm; A, s = 4.0 mxq, c0 = 1.40 mm; +, s = 
6.0 mm, to = 2.21 mm; x , s = 8.0 mm, [, = 2.91 mm; 0, s = 10.0 mm, = 3.40 mm. 
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the amplitude of the forcing was increased. Also, it is seen that the location of the local 
maximum in wave amplitude nearest the shoreline was strongly dependent on the wave 
amplitude. Thus, the waves of largest incident amplitude were the ones most strongly 
attenuated near the shore and their near-shore local maximum occurred furthest from 
the shore line. 

It is seen in figure 7(a) that, at the smallest wave frequency (corresponding to T = 

1.2128 s) the relative maximum wave amplitude near the shore was considerably larger 
than that which obtained at the other frequencies, a consequence (presumably) of the 
smaller influence of viscous effects at the smaller frequencies. The transverse-wave 
fields shown in figure 7(b) are of interest in that the forcing periods T of 0.8800 s and 
1.2128 s correspond respectively to natural frequencies for a full- and a half- 
wavelength transverse mode, and it is seen that the responses of the transverse-wave 
fields were indeed enhanced at these frequencies. It will be shown in $6 how 
imperfections in the beach can lead to very large transverse-wave fields when forced at 
these natural frequencies. We shall, on the other hand, see that edge waves generated 
parametrically, by a subharmonic instability, are far more vigorous than the modes 
shown here. 

5. The edge-wave field 
Series of experiments were made with beach slopes of 5.71", 10.0" and 15.0" to try 

to generate edge waves over these beaches by a subharmonic interaction mechanism. 
(Attempts to generate the edge-wave modes synchronously are described in $ 6.) The 
resonant forcing frequency ( 2 ~ )  for the 5.71" beach had the period labelled T, in figure 
4 : all attempts made at this, and neighbouring periods, to generate edge waves proved 
unsuccessful, even at the largest forcing amplitude of 10 mm stroke available with the 
wavemaker. Indeed, at this level of forcing, the incident waves were so large in 
amplitude that breaking, in the form of capillary ripples between the wave crests, 
occurred just in front of the wavemaker. 

The resonant forcing frequency for edge waves over the 10.0" beach had the period 
labelled TB in figure 4. As with the 5.71" beach, no edge waves appeared spontaneously 
at any forcing amplitude up to a stroke of 10 mm. However, at the larger strokes of 
9 or lOmm, stable edge waves could be generated by making a sufficiently large 
disturbance to the water surface near the shoreline, usually achieved by blowing across 
the surface. On the other hand, it was found that edge waves formed spontaneously 
over the 15" beach at the larger wavemaker strokes when the wavemaker period was 
near the potentially resonant value (cf. figure 4). Photographs of edge waves over 
the 15" beach are shown in figure 9, from which it is seen just how effective, even 
violent, the subharmonic resonance effect can be in driving wave motions. So, for 
example, at the relatively small wavemaker stroke of 4.0 mm, the maximum excursion 
of the shoreline of the edge wave was approximately 110 mm and, at the larger forcing 
amplitude shown in figure 9, the run-up of the edge wave was approximately 200 mm. 
The capillary ripples, so clearly evident in figure 9(b), are manifestations of wave 
breaking, which was prevalent at the larger forcing amplitudes over the 15" beach. An 
interesting feature of the motions was that, relative to the equilibrium shoreline, the 
backwash of the waves was only of the order of 10 to 20 mm, even in the extreme case 
shown in figure 9(b). The fact that the backwash of the waves was so small enabled us 
to make measurements of the edge-wave amplitudes closer to the equilibrium shoreline 
than might have been imagined. Such measurements were also helped by being able to 
use the smaller of the capacitance transducers for all but the very largest waves. 
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FIGURE 9. Photographs of edge waves over a 15" beach formed at a forcing period T of 0.6064 s. (a)  
Wavemaker stroke s = 4.0 mm; (b) s = 8.0 mm. Water depth H = 50.0 mm. The photographs are 
snapshots of the shoreline at the time of maximum excursion, seen near the left-hand wall, and some 
capillary ripples associated with the wave motion can also be seen. Also evident is a curve, which 
delineates the maximum wash of the wave up the beach, and is the edge of a thin film of water left 
on the beach after the wave recedes. The scale shown in the photographs is in cm. 

0 2 4 6 

5 
FIGURE 10. Longitudinal- and transverse-wave fields over a 10" beach at a forcing period T = 
0.7400 s, with an undisturbed water depth of 50.0 mm. Wave-maker strokes = 9.0 mm. The toe of the 
beach was at 5 = 2.95. 0, A, longitudinal-wave fields g = <o/ [o (XT) ;  0,  A, tLansverse-wave fields 
9 = 7,/<,(X,). For the fields deno_ted 0, 0 there was no edge wave present; d ( X ,  = 3.25 mm; for 
A, A an edge wave was present; c0(XT)  = 3.36 mm. 
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FIGURE 11. Wavefields over a 15" beach at various forcing periods and a wavemaker stroke s = 
8.0 mm, with an undisturbed water depth H = 50.0 mm. (a) Longitudinal-wave fie!d; (b) transverse- 
wave field. a, T = 0.4000 s;-co(X,) = 6.00 mm, X ,  = 4.38; A, T = 0.4900 s, co(XT) = 3.45 mm, 
X ,  = 2.93; +, T = 0.6064 s, co(XT) = 3.91 mm, X ,  = 1.90. 

Measurements comparing the longitudinal- and transverse-wave fields over a 10" 
beach, with and without an edge wave present, are given in figure 10. As indicated 
above, the hysteresis associated with the edge wave allowed a measurement of this kind, 
when the forcing amplitude was not too large. The results indicate a large difference 
between the background transverse motion and the edge-wave field, whereas the 
differences between the longitudinal-wave fields, in the presence and absence of the 
edge wave, were not very pronounced at all. Two aspects of the edge-wave structure 
deserve special mention. The first is the presence of a maximum wave amplitude 
occurring at a considerable distance from the shoreline, in contrast to what is expected 
on the basis of the current edge-wave theories. This phenomenon is common to all the 
measurements we have made and is believed to be associated with viscous, and possibly 
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FIGURE 12. Transverse-wave fields over a 15" beach at a forcing period T = 0.6064 s, for a variety of 
wavemaker str_okes, s. Water depth H = 50.0 mm; X,-= 1.90. 0, s = 2.0 mm, co(X,) = 1.13mm; A, 
s = 4.0 mm, c0(X,) = 2.40 mm; +, s = 6.0 mm, c0(X,) = 3.16 mm; x , s = 8.0 mm, c0(X,) = 

3.91 mm; 0, s = 10.0 mm, co(XT) = 4.66 mm. 

nonlinear, effects. The second feature of note is the radiation of the edge wave into the 
uniform section of the channel, ensuring a substantially larger transverse-wave field in 
the channel than was present before the edge wave was generated. The decay properties 
of the edge-wave field with fl  will be considered in more detail below. 

Examples of the edge-wave and longitudinal-wave fields over a 15" beach are given 
in figure 11 at two non-resonant frequencies and at the potentially dangerous period 
q. (The wave fields in the uniform part of the channel at the forcing period T = 

0.6064 s have already been given in figure 6(e), to which reference should be made.) 
Shown in figure 12 are examples of edge-wave fields over the 15" beach at a variety of 
forcing amplitudes of the wavemaker with the forcing frequency held constant. 

The classical theories of Stokes and Ursell indicate that the edge-wave amplitude 
decreases exponentially with offshore distance, as indicated by (1) and (2). We have 
compared decay rates of the edge-wave amplitudes (for distances beyond the point 
where the maximum amplitude was attained) with the theoretical decay rates for the 
Stokes mode. The result of such a comparison, for the wave depicted in figure 11 (b) 
is shown in figure 13, where log 7 has been plotted as a function of fl .  Also shown in 
this figure is a linear regression line of best fit of the data, the slope of which is -0.941, 
not far off the theoretically expected value of - 1. Similar comparison have been made 
with the other edge-wave modes shown in figures 10 and 12. In all these cases 
regression slopes of approximately -0.9 were obtained (with the exception of the data 
set at s = 6.0 mm of figure 12, which seemed to exhibit a curious kind of'bimodal 
structure) indicating fairly good general agreement with the expected edge-wave decay 
rate, even if slightly below the theoretical value for the Stokes wave. 

5.1. Margin of stability 
Some experiments were conducted to determine, as a function of frequency, the 
amplitude of the incident-wave train above which edge waves were sustainable. Such 
measurements are complicated somewhat by the hysteresis associated with the 
formation of the edge wave, in that often the initial seeding of the instability had to be 
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FIGURE 13. The decay rates of the edge wave depicted in figures 11, showing log 7 as a function 
of 5. The straight line is the linear regression curve of best fit to the data and has slope -0.941. 

supplied externally, usually by blowing gently on the water surface near the shoreline. 
Thus, the experimental procedure consisted of establishing a progressive wave field, 
then carefully perturbing the free surface and watching to see if the resulting 
disturbance developed into a stable edge wave or decayed, leaving only the progressive 
field. By using considerable patience, this procedure seemed to be fairly reliable. 
Moreover, as we shall report below, the present measurements are reinforced by 
measurements of the initial growth rates of the instability. For the measurements 
described below the pair of wave transducers used to detect the edge-wave amplitude 
were located at a distance of 137 mm from the equilibrium shoreline on the beach. 

The marginal stability measurements were found to be quite sensitive to small effects. 
One particularly important quantity was the cleanliness of the free surface. The surface 
was normally skimmed clean before each measurement but, if the surface was allowed 
to establish a contaminating film over a period of the order of an hour, it was found 
that the stability properties were substantially affected. Thus, the shape of the marginal 
stability curve was not substantially altered, but considerably larger forcing levels were 
needed to sustain the edge wave. 

Measurements of the marginal stability curve for waves over a 15" beach are shown 
in figure 14(a). The curve shows the critical amplitude, cc, of the incident-wave field at 
the toe of the beach (above which amplitude edge waves were sustained indefinitely) as 
a function of the forcing period T for the incident-wave train. Note that the curves 
shown in figure 14 are simply a spline fit of the points. Because of the unexpected 
nature of the marginal-stability curve in figure 14(a), measurements were repeated at 
a second, quite distinct, water level, the results of which are given in figure 14(b). It 
is seen that the two graphs shown in figures 14(a) and 14(b) have the same general 
appearance, even though the precise details differ a little between the two. It is believed, 
as we shall explain below, that the two local maxima apparent in the marginal stability 
curves derived from a nonlinear wave interaction associated with the newly formed 
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FIGURE 14. Curves of marginal stability for the formation of edge waves over a beach of slope 15". 
For a given wavemaker period T, edge waves persisted if the incident-wave amplitude &,/Hat the toe 
of the beach exceeded Q. The experimental points are linked by a spline interpolant. (a) Water depth 
H = 50 mm. The theoretical curves correspond to the theory of Miles (1990a) and have C = 0 (+-), 
C = 1 (---) and C = 2 (-.-). (b)  H = 100 mm. 

edge wave. Also shown in figure 14(a) are some curves giving the theoretical margin 
of stability predicted by the theory of Miles ( 1 9 9 0 ~ ) .  For these calculations the most 
unstable mode was taken to have arisen at a forcing period of 0.6068 s (edge-wave 
period 1.2136 s), and the three theoretical curves correspond to damping coefficients 
C = 0, 1,2 (where Cis as given by Miles 1990a, p. 55, equation (7.3)), with C = 1 for a 
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FIGURE 15. Growth rates y for edge waves over the 15" beach with a-water depth H = 50.0 mm, for 
various forcing strokes of the wavemaker (as indicated). Here 6 = &/H denotes the incident-wave 
amplitude at the toe of the beach and Tis the wavemaker period. The data points are linked by spline 
interpolants. 

clean surface and C = 2 for a fully contaminated surface. The theoretical curves shown 
in figure 14(a) also allow for imperfect reflection of the incident wave, which feature 
has the effect of broadening, by about 30%, the range of frequencies for which the 
edge-wave instability was observed. It is seen that, under these conditions, the 
theoretical bandwidth of the stability boundary is considerably smaller than that 
observed experimentally, though the presence of another resonant wave mode could 
account for a further broadening of the stability boundary. 

5.2. Growth rates 
Estimates have been made of the initial rate of growth, y ,  of edge waves established in 
the course of determining the stability boundary shown in figure 14(a). To make such 
estimates it is assumed that the edge-wave amplitude, 7, at a given position 5, and 
during the early stages of its development, can be represented in the form 

T(&, t )  = T i  eyt, 

where yi is some constant. Because of the sensitivity of the capacitance probes used to 
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FIGURE 16. -Edge-wave growth rates, y, measured at T = 0.6068 s as a function of incident-wave 
amplitude, l&~',), are compared with theoretical predictions from Miles (1990~): -, C = 0 .  , >  --- 

c = 1; -.-, c = 2. 

measure the wave amplitudes, it was possible to make quite an accurate estimate of y 
while the edge-wave amplitudes were still only a small fraction (less than 10 YO) of the 
eventual wave amplitude. 

The values of y thus determined are shown in figure 15 for various indicated values 
of the stroke of the wavemaker. The curve in the plane y = 0 is the same as that given 
in figure 14(a). It is seen from the figure that the initial growth rates reflect the same 
kind of structure as found for the marginal-stability curve, in that there were valleys 
of small growth rates near the forcing periods of 0.595 s and 0.615 s, at which periods 
the marginal-stability curve indicates it was relatively difficult to generate the edge 
waves. 

A comparison of the measured values of y made at T = 0.6068 s (namely the values 
of y given by the appropriate section of the graph shown in figure 15) has been made 
with the predicted growth rates given by the theory of Miles (1990a, p. 55) and the 
results are given in figure 16. It is seen from this comparison (in which account was 
taken of the reflected-wave field observed experimentally) that the theoretical values 
for C = 1 considerably underestimated the measured growth rates of the instability. 
(We do not have complete confidence in the veracity of the data point at the second 
largest forcing amplitude, cf. also figure 15, but there was no cogent reason to discard 
it from the data set.) 

In these experiments it was found that, by and large, the edge-wave field eventually 
settled down to a steady state though, as we shall show below in figure 19, there was 
a small modulation of the edge-wave field at certain frequencies. A perspective picture 
of the wave-field amplitudes thus observed is given in figure 17: for the purposes of 
making this graph we have taken an average value of the edge-wave field when 
modulation was observed. There is some ambiguity in how to specify the maximum 
value of the edge-wave amplitude from measurements made at a fixed location 
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FIGURE 17. Equilibrium values 7 = +j/ t0(XT) for the maximum edge-wave amplitude over the 15" 
beach witka water depth H = 50.0 mm, for various forcing strokes of the wavemaker (as indicated). 
Here 5 = Co/H denotes the incident-wave amplitude at the toe of the beach and T is the wavemaker 
period. The data points are linked by spline interpolants. 

(137 mm) offshore. Measurements of the wave amplitude across the channel at this 
station indicated that it conformed closely to a half-cosine profile, as expected 
theoretically. Thus, the maximum wave amplitude (at the wall of the channel) at 
position 137 mm offshore could readily be inferred from the amplitude measured at the 
offset transducer (cf. 93.4). The maximum wave amplitude, as a function of offshore 
distance, was less clearly definable, as indicated by the results shown in figure 12, for 
example. However, from examination of such data it was decided that a constant 
scaling factor of 2.5 gave a reasonably good estimate of the maximum amplitude 
compared with that measured at [= 137 mm. A graph of the maximum edge-wave 
amplitudes thus estimated, for a forcing period T = 0.6068 s is given in figure 18. 

5.3. A tank seiche 
The unexpected nature of the marginal-stability curves shown in figure 14 and of the 
growth-rate data shown in figure 15 seems to have been associated with a seiching 
motion in the channel, apparent over a small range of forcing periods above and below 
the most unstable forcing period for edge waves. 

For the experiment depicted in figure 14 the seiche was clearly evident for forcing 
periods in the approximate intervals [0.5960, 0.60401 s and [0.6160, 0.62401 s, and for 
respective wavemaker strokes in excess of 7 mm and 4.5 mm. The seiche was found to 
have a period of approximately 22 times that of the incident wave, as can readily be 
seen from the modulated incident-wave field shown in figure 19. (Also evident in the 
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FIGURE 18. The maximum edge-wave amplitude +M, as a function of the incident-wave amplitude 
at the toe of the beach, for T = 0.6068 s. 
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FIGURE 19. Sample record taken during growth-rate measurements. -Shown is the modulated 
longitudinal-wave field and the subharmonic edge wave (central curve) at 6 = 137 mm. The amplitude 
of the edge-wave field has been magnified by a factor of 2. p =  15", s = 9 mm, H = 50 mm, T = 
0.6000 s. 

wave records shown here is a small modulation of the edge-wave field.) The amplitude 
of the seiching motion was of the same order of magnitude as that of the incident wave 
for wavemaker strokes in excess of 6mm, but was of a smaller order for smaller 
strokes. 

Corresponding to forcing frequencies of 0.6000 s and 0.6200 s, the periods of the 
seiche were 13.20 s and 13.64 s respectively, implying respective wavelengths of 9.22 m 
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FIGURE 20. Edge-wave amplitudes 7 = 7j0/&XT) over a beach tilted at angle 0.89" across the channel 
are compared with those over a plane beach: 0, plane beach, 1.2128 s forcing; 0 ,  tilted beach, 
1.2128 s forcing; 0, plane beach, 0.6064 s forcing; A, tilted beach, 0.6064 s forcing. Wavemaker 
stroke s = 8 mm. 

and 9.54 m in a channel of uniform depth 50 mm. Since the total distance L to the 
shoreline was approximately 4.69 m it would appear that the seiche was associated with 
natural periods of oscillation for the tank. These properties suggest that the seiching 
motion was established as the result of resonant interactions among the various 
possible modes in the tank. The most likely candidates would appear to be the incident 
(and or reflected) wave field, the longitudinally radiating field associated with the edge 
wave and the seiche. However, the appropriate wavenumber and frequency relations 
for resonance are only very approximately satisfied by this triad. We also considered 
possible quartets involving transverse waves radiated from the edge-wave field, but 
these do not fit the resonance criteria at all well. 

(Note in review: A referee commented that a seed for the seiche might be supplied 
in the start-up process of the wavemaker. This is entirely possible as no special 
precautions were taken with the wavemaker start-up.) 

6. Topographical forcing 
In addition to the experiment described briefly in 0 1 we have made some experiments 

over a plane beach which had been deliberately tilted across the channel, the angle of 
tilt being approximately 0.89", considerably smaller than the 15" slope down the beach. 
Wave-field measurements were made for wavemaker periods of 0.6064 s and 1.2128 s, 
the former being a period at which edge waves could readily be generated 
subharmonically and the latter period corresponds to the natural period of oscillation 
of the edge wave. The results of such measurements are given in figure 20 where the 
edge-wave amplitude 7 is plotted as a function of the scaled offshore distance (= 
Cc2/g sin /3, with here taken to be defined by the period 1.2128 s. 
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For the experiments conducted over the tilted beach at a period of 0.6064 s, 
measurements of the edge-wave profile were complicated by the fact that the reflected- 
wave field was skewed to the incident-wave field. The edge-wave field shown in figure 
20 was obtained by averaging the transverse-wave amplitudes measured at alternate 
incident-wave maxima. Notwithstanding this difficulty, the edge wave over the slightly 
tilted beach had properties similar to those observed over the plane beach, except for 
the fact that the shorter-period sideband was not observed, and the bandwidth of the 
marginal stability curve was somewhat reduced, having limits of approximately 
0.6014 s and 0.6318 s. 

Of greater interest, however, were the wave fields over the beach at an incident-wave 
period of 1.2128 s. It is seen from the figure that the response forced by the tilted beach 
was not greatly dissimilar to that observed when the edge waves were generated 
subharmonically over either the plane or the tilted beach. The synchronously generated 
waves over the tilted beach were, however, clearly forced by the topographical 
structure of the beach since, with the standard beach, it is seen from the figure that the 
edge-wave response was minimal. This experiment must bring into question the 
interpretation of reported observations that edge waves seen at synchronous forcing 
periods may have arisen as a consequence of nonlinear wave interactions associated 
with the longitudinal standing-wave field. 

7. Conclusions 
The experiments reported herein were carried out to investigate the mechanism by 

which edge waves may be generated over a plane beach by waves normally incident on 
the beach from an ocean swell. Because of the large number of modes possible in our 
simple apparatus, considerable care was needed to delineate carefully the underlying 
motions whose stability was to be investigated. As indicated in the text, this basic task 
had several surprises of its own, revealing wave structures we are not able properly to 
explain at this stage. Nevertheless, a careful mapping of the primary wave field 
provided a very useful basis for defining an appropriate level of forcing for the 
subharmonic instability mechanism through which the edge waves were generated. The 
edge waves thus observed were found to have properties that conformed moderately 
well with the extant theories, though discrepancies do exist, the reasons for which we 
do not completely understand at present. One very interesting observation in 
connection with the generation mechanism was the feature that yet another wave 
interaction was observed, in which the whole of the tank responded in a seiching mode 
at certain values of the forcing frequency. The presence of the tank seiche apparently 
broadened the bandwidth of frequencies over which the instability mechanism was 
observed in the experiments, making a close comparison with theory difficult to 
interpret. On the other hand, the initial growth rates of the instability observed 
experimentally appeared to be significantly larger than was expected theoretically. 

It was found in our experiments that edge waves could very easily be generated by 
the presence of small imperfections at the beach. In one case edge waves were generated 
quite accidentally by such topographical forcing, and it would therefore appear that, 
since ocean beaches are never perfectly plane or regular, such a mechanism could be 
a common source for the generation of edge waves in practical situations. 

We are deeply indebted to Dr Janet Becker of the University of California, San 
Diego, for kindly calculating the theoretical results shown in figures 14 and 16, and for 
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her helpful comments. The work of W. G. P. was supported in part by the National 
Science Foundation through award number DMS-9104518 and by a Keck Foundation 
award. 

Appendix. Numerical simulation of the early development of the incident- 
wave field 

Numerical experiments have been made to simulate the measuring procedure used 
to obtain the data shown in figure 4, which data was measured from wave records of 
the kind depicted in figure 5. The mathematical model used for these computations is 
given in (4), with the value of ,u chosen to match the decay rate of the steady wave field 
at a period T = 0.6064 s, as shown in figure 6(a). The amplitude of the wave field 
depicted in figure 6(a) was found to attenuate at a rate of approximately 0.00435 per 
unit depth of water (i.e. at a rate $' d[/dx, where [ denotes a wave amplitude, and 
x := 2 / H  is the distance along the channel). The procedure by which this estimate was 
made is quite standard, and is described, for example, in Benjamin et al. (1987). Such 
a decay rate is closely matched by the choice ,u = 0.0 1 in (4) and an example of the wave 
amplitudes at X = 30.0, for such a value of ,u, is compared in figure 21 (a) with those 
found for ,u = 0. The numerical experiment from which the results of figure 21 (a) were 
obtained simulates the kind of experiment depicted in figure 5 ,  with only the 
amplitudes of the wave crests being given here. 

An interesting feature evident in figure 21 (a) is that, with no dissipation present, the 
amplitude of the wave crest settled down only very slowly whereas, with just a small 
amount of dissipation, the wave amplitude settled to a nearly constant value after only 
six or seven crests had passed the observation point. This feature was wholly consistent 
with the experimental observations (cf. figure 5). The input wave amplitude h, for these 
computations corresponded approximately to the amplitude levels associated with the 
measurements depicted in figure 4(a) at a period T = 0.7400 s. The influence of 
different values for the dissipation coefficient ,u is also depicted in figure 21 (a). A value 
for ,u of 0.010 gives approximately the same amount of wave damping as that found 
in the experiments at the same forcing period T. At larger wave amplitudes similar 
kinds of results were obtained, as shown in figure 21 (b) where the magnitudes of the 
wave crests at X = 30.0 are shown for the forcing amplitude h, = 0.06, which value 
corresponds to the amplitude levels associated with the experiments of figure 4(c) at 
T = 0.7400 s. The wave profile well behind the leading waves at X =  30.0, corresponding 
to the computation shown in figure 22 with ,u = 0.01, is given in figure 22. This graph 
indicates the importance of nonlinear effects on the wave profile at typical amplitudes 
used in the main experiments. So, for example, we find in this particular case that the 
wave crest had a magnitude of approximately 0.0567 and the trough of the wave was 
- 0.0462 ; comparable values for the non-dissipative cases were 0.065 1 and - 0.0552 
respectively. It is interesting that, in the latter case, half the difference between height 
of the wave crest and the trough was 0.0602, which value coincides very closely with 
the value of 0.06 used for h,. This latter property was found to apply very closely in 
all our numerical experiments, suggesting that the empirical method used to 
characterize the wave amplitudes (see 93.4) should have given a fairly good 
representation of the wave fields. 

Similar plots of the wave crests at a period T = 1.2128 s, near the upper end of the 
range of measurements for figure 4, are given in figure 23(a), and at a period T = 
0.4000 s, near the lower end of the range, are shown in figure 23 (b). There is, however, 
a minor complication associated with the choice of an appropriate value for the 
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FIGURE 21. The amplitude of the wave crests at X = 30.0 for the solution to (4) subject to boundary 
data c(0, t )  = h, sin wt with w = 0.6062 (corresponding to T = 0.7400 s). (a) h, = 0.01 : 0, p = 0 ;  *, 
p = 0.005; +, p = 0.010; 0 ,  p = 0.014. (b) h, = 0.06: 0, ,U = 0 ;  *, p = 0.01. 
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FIGURE 22. The waveform [ well behind the leading crests (at a time to x 400) as found at X = 30.0 
for the solution to (4) subject to boundary data [(O, t )  = ha sin w(t+  to),  with h, = 0.06, w = 0.6062 
(corresponding to T = 0.7400 s) and ,U = 0.01. 

t 

dissipative constant p. The reason is that damping effects arising through dissipation 
in the boundary layers at the bottom and sidewalls of the channel are proportional to 
kl/', where k is the wavenumber of the motions. On the other hand, the dissipative 
operator pcxx used in the model equation (4) dampens waves at a rate proportional to 
k2. Thus, the constant p must be adjusted for each wavenumber in order to achieve the 
amount of damping appropriate to each experiment. In the present computations p has 
been scaled by a factor k-3/2, using the above-mentioned value p = 0.010 near the mid- 
range of the measurements (at T = 0.7400 s) on which to base the scaling. 

The results shown in figure 23 (a) for the longer-wavelength motions have similar 
features to those seen in figure 21 (a)  at T = 7400 s, so we have included only the results 
of the computations corresponding to the largest of the wave amplitudes for figure 4. 

For the shorter-wavelength motions (at T = 0.4000 s), the computations yielded 
rather surprising results, as indicated in figure 23 (B) .  The non-dissipative model 
showed considerable variation in the amplitudes of the wave crests at X = 30.0, even 
after 60 or 70 crests had passed the station. It is seen from the figure that the addition 
of dissipation to the model had the effect of reducing the variation in the amplitude of 
the wave crests and that, with a value for p of 0.004, the crests behind the front of the 
wave train did, indeed, settle down to a nearly uniform level, as was observed in our 
experiments (see, for example, the waveform shown in figure 5). The value p = 0.004 
should, by virtue of the k-3/2-scaling discussed above, correspond approximately to the 
value appropriate to the experimental conditions at this period. Thus, we see that the 
wave amplitudes should have been diminished by approximately 50 YO by the time they 
reached the observation station at X = 30.0. Some caution should, however, be used 
in making interpretations from these calculations for, at the shorter wavelengths of the 
experiments, the shallow-water approximation would not have applied very well to the 
experimental situation. In fact, the ratio of the wavelength to the water depth was only 
5 at the period labelled in figure 4. This feature should have meant there was less 
dissipation from the boundary layer at the channel bed than would be expected on the 
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FIGURE 23. The amplitude of the wave crests at X = 30.0 for the solution to (4) subject to boundary 
data c(0, t )  = ha sin wt .  (a) ha = 0.03 and w = 0.3699 (corresponding to T = 1.2128 s) : 0, p = 0 ;  +, 
p = 0.0210. (b) h, = 0.01 and w = 1.1210 (corresponding to T = 0.4000 s): 0, p = 0 ;  *, p = 0.001; 
+, p = 0.004; 0,  p = 0.010. 
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basis of a long-wave model (cf. the discussion in $4.1.1); in practice we could also 
expect somewhat different evolutionary properties for the wave train than that 
predicted on the basis of the long-wave approximation. 
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